CBRN Weapons

Challenges in controlling dual-use technology transfers

Dr Jean Pascal Zanders
The Trench

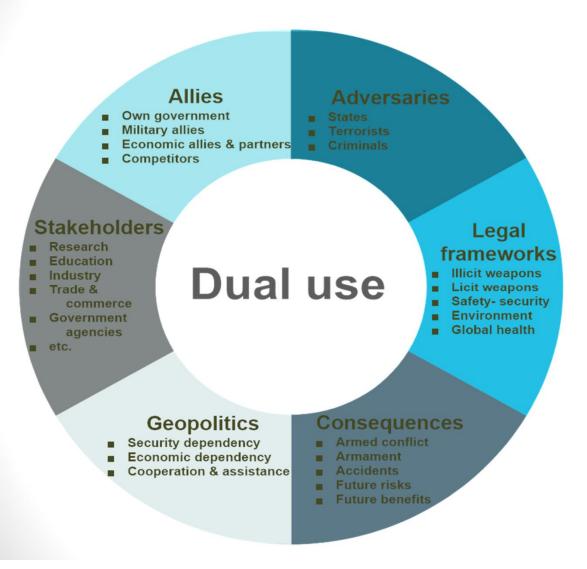
Students' course Taras Schevchenko National University Kyiv, Ukraine, 19 April 2023

Part 1
THE 'DUAL-USE' CONCEPT

How do you conceive of 'dual use'?

- The 'dual use' concept suggests a duality in the application of technology
 - In the 1970s and 1980s, e.g.
 - A 'dual-use bomber'
 - A 'dual-use artillery piece'
 - Meaning: Having the capability of launching both conventional and nuclear munitions
 - Today, the concept more often suggests the possibility of conflicting end goals, one of which is considered less or undesirable depending on circumstances
 - Military vs. civilian applications
 - Harm vs benefits
- 'Dual use' rests on multiple subsidiary concepts
 - Often associated terms include technologies, goods, exports, transfers, etc.
- Context is crucial to the consideration of implications of the 'dual use' concept
 - Example of the 'carving knife'.

How does perspective affect the conception of 'dual use'?


Negative associations

- An adversary state, a terrorist entity, a criminal motivated to cause maximal harm
- A rogue scientist, a greedy business entrepreneur, a crooked trader, a corrupt official
- Doomsday scenarios involving heightened security risks, wars with cataclysmic consequences
- Contribution to the development and acquisition of illicit weaponry
- Proliferation of 'dual-use' technologies to entities posing security threats should be countered
- Heightened anxieties about the consequences of scientific and technological advances, including risks associated with accidents or possible future applications

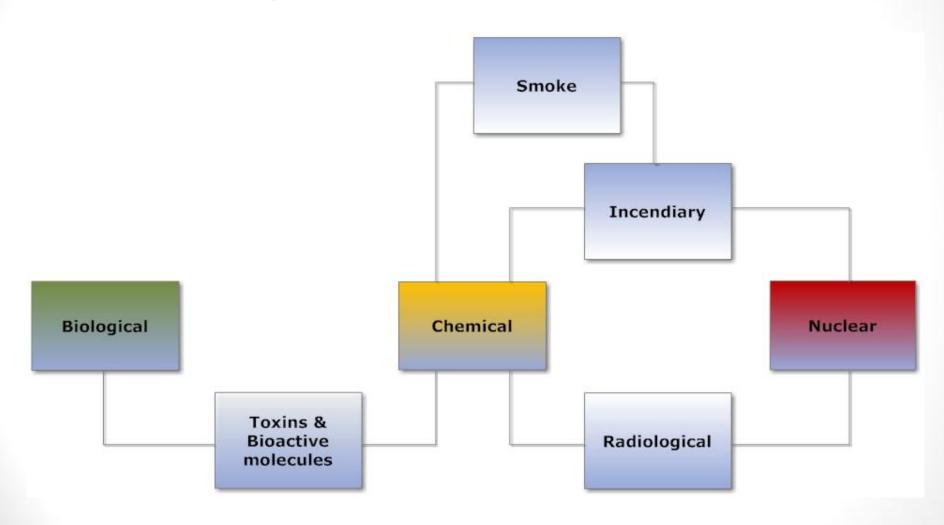
Positive or neutral perceptions

- A less salient matter when pursued by one's own government or allied countries
- A cost-beneficial characteristic a state should actively pursue for both military and civilian applications, especially for the development and acquisition of licit weaponry
- Not considered an issue when end goals benefit society or humanity

'Dual use' in a multi-faceted environment

Policy Mix (sample)

- International security
 - International treaties & norms
 - Non-proliferation policies; sanctions
- Prevention
 - National laws and regulations
 - Export and transfer controls
 - Intelligence & dialogue with stakeholders
 - International cooperation
 - Institutional policies and individual responsibilities
- Education & Outreach
 - Awareness-raising among stakeholder communities
 - Educational programmes
 - Training programmes
- Risk mitigation
 - Security & safety
 - Ethics & professional codes
 - Risk analysis
 - Foresighting


Part 2

CBRN WEAPONS AND *DUAL-USE* TECHNOLOGY

CBRN weapons or non-conventional weapons

- Non-conventional weapons habitually comprise 4 distinct weapon categories:
 - Chemical Weapons
 - Biological weapons
 - Radiological weapons
 - Nuclear weapons
- 'Weapons of Mass Destruction' versus 'non-conventional weapons'
 - 'WMD' has no internationally accepted legal definition
 - Each weapon category falls under a different (type of) legal regime
 - The respective legal regimes determine the formal scope of the weapon category
 - CW and BW formally defined in treaties (CWC; BTWC)
 - RW and NW lack universally accepted legal definitions
 - 'WMD' does not differentiate between types of weapons within a single arms category
 - 'Non-conventional weapons' focusses on status in national security policies and military doctrine rather than on the consequences of their use
- 'Non-conventional weapons' versus 'conventional weapons'
 - Use of 'non-conventional weapons' is authorised by the highest political or military decision-makers; authorisation of use of 'conventional weapons' is pre-delegated depending on circumstances
 - Distinction is reflected in 'proliferation' [prohibited] versus 'arms trade' [authorised].

The CBRN spectrum

CBRN weapons & technology transfers

- There is no or hardly any trade in CBRN weapons
 - Extremely dangerous for the people involved in trafficking
 - 'Weapons' are bulky (munitions; storage containers) and therefore difficult to move
 - Requires specialised equipment
 - In some instances, large volumes would have to be transported (e.g. CW)
 - Complex & highly specialised networks required
 - Unusual requests become visible to intelligence agencies
 - Activities at weapon research, production and storage sites are under observation (e.g. satellites)
- Transfers therefore mostly involve technologies *underlying* CBRN weapons
 - Materials: toxic agents & their precursors, pathogens, radioactive sources, ...
 - People: scientists, engineers, technicians, students, ... (education, experience & expertise)
 - Research: equipment, software, methodologies and results
 - Production: equipment and processes
- Consequently, there are many dimensions to controlling technology transfers

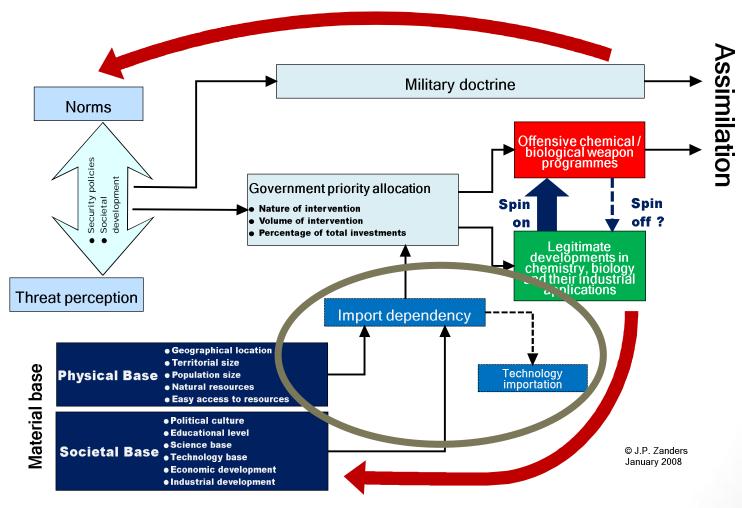
Our challenge with dual-use technologies

- As noted,
 - There is no or hardly any trade in CBRN weapons
 - Transfers therefore mostly involve technologies underlying CBRN weapons
- However, most of those technologies have legitimate non-military purposes
- These observations raise several complex questions for technology transfer controls
 - Certain technologies contribute directly to the development of the weapon in question
 - Other technologies contribute indirectly to weapon development
 - Acquisition of certain types of technology are of immediate relevance to weapon development
 - The relevance of other technology acquisitions for weapon programmes may only become clear over many years or decades
- For these reasons, it is necessary to have some understanding of weapon acquisition processes

Basic elements of arms acquisition

- Initial decision to acquire a particular type of weaponry
- Parallel dual-track progression:
 - Political decision-making: Mobilisation and allocation of resources
 - Military decision-making: Doctrine / operational guidance formulation
- Basic stages:

Own development


- Weapon design
- Weapon development
- Weapon testing
- Upscaling production
- Production and stockpiling
- Training

Acquisition

- Purchase full weapon (system)
- Purchase underlying technology
 - Importation equipment, knowledge & expertise
- Testing
- Production and stockpiling
- Training

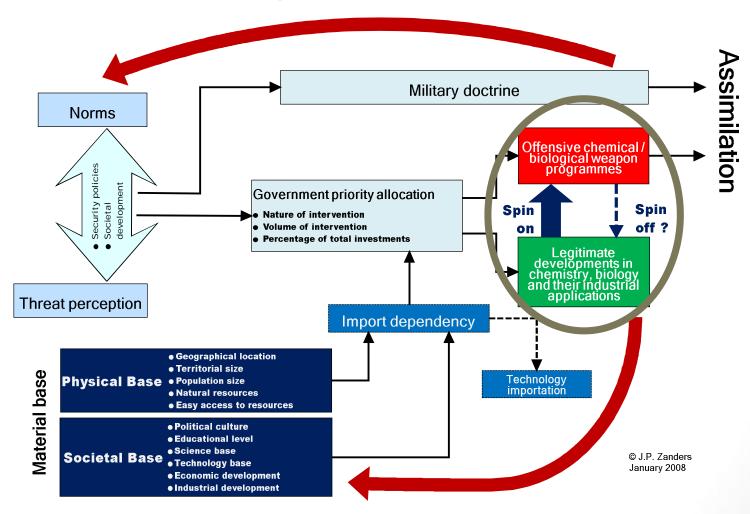
- Assimilation:
 - Weapon must meet demands formulated on both political and military decision-making tracks
- Preparation of use, including training and deployment

Place of technology transfers in the armament dynamic (Demand side)

Part 3
DEFINING TECHNOLOGY AND *DUAL-USE* TECHNOLOGY

What is 'technology?

'Technology comprises


- the ability to recognise technology problems,
- the ability to develop new concepts and tangible solutions to technical problems,
- the concepts and tangibles developed to solve technical problems, and
- the ability to exploit the concepts and tangibles in an effective way."

Errko Autio and Tomi Laamanen, 'Measurement and evaluation of technology transfer: Review of technology transfer mechanisms and indicators', *International Journal of Technology Management*, Vol. 10, Nos. 7/8 (1995)

What is 'dual-use' technology?

- Dual-use technology: a technology that has the potential to be applied for a purpose other than the one for which it was originally intended
 - *Spin-on*: military application of technology originally intended for civilian purposes
 - Spin-off: civilian application of technology originally intended for military purposes
- Single-use technology: a technology that lacks such potential
 - e.g. the weapon itself

Long-term technology transfers in the armament dynamic

Weaponisation of consumer technology

- Customisation of off-the-shelf, commercial technologies for use
 - As a weapon in combat or terrorist operations
 - In support of warfare or terrorist operations
- Is a spin-on process

- Consumer drones adapted to deliver weapon payloads
 - Major development in the Ukrainian war
- Also possible with improvised CBRN weapons

Tangible and intangible technology

- Tangible objects or artefacts (also often called 'goods')
 - Pathogens, chemicals (including precursors), toxins, radioactive sources
 - Laboratory equipment
 - Fermenters, centrifuges, production equipment, installations and facilities
 - Delivery systems, and special equipment associated with weapon use
 - Etc.

Intangible technologies

- Data
- Patents
- Processes
- Knowledge
- Expertise and skills
- Etc.

Knowledge and expertise

- Academia
 - Universities
 - Research institutes and think tanks
 - Students
- Scientists and engineers
 - Research institutes
 - Laboratories and testing facilities
- Professionals
 - Technology experts
 - Technicians
- Civil society
 - Expertise in various areas, including assistance in treaty implementation, etc.

Part 4

CBRN WEAPONS AND *DUAL-USE* TECHNOLOGY

CBRN weapons & dual-use

- A CBRN weapon is a 'single-use' technology
 - It has no other purpose than being a weapon
- CBRN weapon development often rests on 'dual-use' technology
 - Materials
 - People: scientists, engineers, technicians, ...
 - Research equipment, methodologies and results
 - Production equipment and processes
- The core question is: when is the 'single-use' stage reached in weapon development?

Reaching the single-use stage

Chemical weapons

- Agents in bulk or filled in munitions, delivery systems; specialised equipment (CWC definition of a CW)
- However, CWC places certain toxic chemicals and their precursors in Schedule 1, meaning that in
 essence, they have no other purpose than being a CW (= single use)
 - But what about other precursor chemicals or past warfare agents such as chlorine and phosgene?

Biological weapons

- In contrast, the BTWC faces the problem that BW are the only arms category in which the active
 ingredient can be used for both attacking and defending the target
 - · Activities in BW defence, protection and prophylaxis are permitted, but hardly distinguishable from BW offence
- Raises questions about activities that may inadvertently contribute to BW development in the present and the future

Radiological weapons

When a radioactive source is fixed to an explosive device or upon release?

Nuclear weapons

When enrichment of nuclear fuel exceeds 20%?

Summary of 'dual-use' debate

Dual-use issues arise when the attempts to control a particular technology confront the non-military commercial and scientific interests in such technology

Disarmament

- Total ban on the development, production and possession of a weapon and preparations for its use in warfare (BTWC, CWC)
- 'Dual-use' issue emerges when
 - Civilian facilities and installations need to be verified
 - Need to prevent the (inadvertent) assistance to the development of a banned weapon by another state or non-state entity
- Ban of weapon (= single-use technology) is central; control of dual-use technology supports that central
 goal

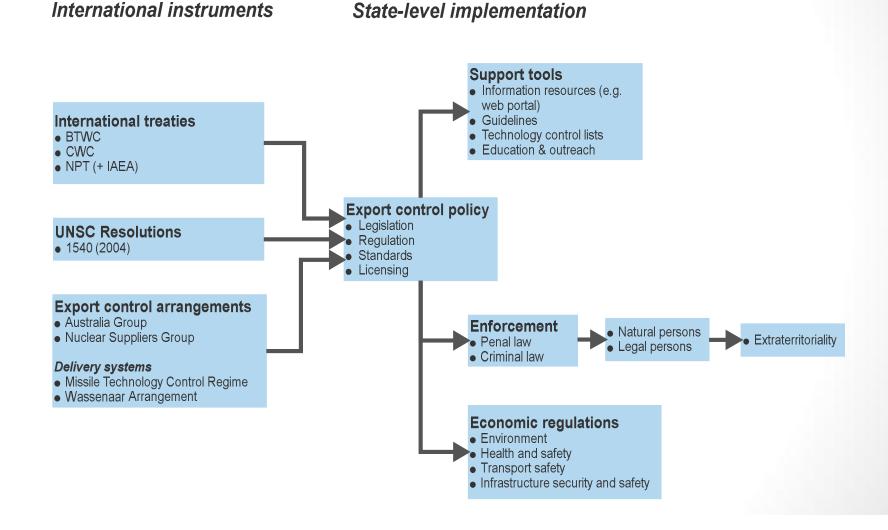
Non-proliferation

- Control of access to technologies that may contribute to undesired weapon development in another state or non-state entity
- Primary policy tool for weapon categories whose use in war or possession has not been wholly delegitimised (e.g., nuclear weapons, ballistic missiles)

Part 5
CHALLENGES IN MANAGING
DUAL-USE TECHNOLOGY TRANSFERS

Nature of technology transfers

- Commercial transactions
 - Trade
 - Assistance
 - Technology may be free for recipient
 - Nevertheless, transfer involves many commercial trade-related activities
- Business decisions
 - Mergers and acquisitions
 - Divestiture of business activities
 - Friendly/hostile company takeovers
 - Corporate breakups
- Undesired technology transfers
 - Theft
 - Propriety information
 - Research, production, process or product data
 - Tangible technologies
 - Hacking
 - Espionage
 - Industrial espionage
 - Government-initiated espionage


Company interests

- Desire to have commercial relations as free as possible
 - Maximise opportunities for technology development and production
 - Maximise profit generation through sales
 - Minimise cost and impediments that could increase cost
- Transfer controls
 - Interfere with free commercial relations.
 - Restrictions on customer selection
 - Administrative burden
 - Administrative requirements
 - Additional staff or outsourcing of administrative requirements
 - Risk assessments
 - Time delays
 - Increase cost

New security actors

- Intent on harm
 - Criminals & terrorists
 - Have potential interest in CBRN materials
- Economic imperatives have replaced security imperatives
 - Sub-state economic units.
 - Industry, shipping agencies, etc.
 - Research institutes
 - Researchers, students, etc.
 - Transnational economic units
 - Multi-national corporations
 - State (agencies)
 - International organisations

Legal foundations of an export control system

A dynamic environment

- Treaties govern inter-state behaviour; new dynamics in CBRN weapons prevention are less state-centric
 - Impact on verification requirements in international treaties
 - New forms of technology transfers
 - Difficult to capture under current transfer control regimes
 - Emphasis on national implementation
- Individualisation of threats and threat perceptions
 - A major consequence of terrorism
 - Increasingly, governments frame responsibilities for individual economic actors and professionals
 - Functions through national legislation and regulations
 - Companies, universities, research institutes and professional associations adopt regulations, professional codes and ethical guidelines

E-mail: jpzanders@the-trench.org

Twitter: @JPZanders

Blog: http://www.the-trench.org/blog/